更多>>精华博文推荐
更多>>人气最旺专家

李建伟

领域:中新网江苏

介绍:一、主要问题到法院上班近两年的时间里,在院党组、办室领导和同志们的帮助下,虽然做了一些工作,较为认真地完成了领导交办、本职范围内的工作,但是对照思想作风整顿活动查摆问题阶段的实施方案还存在不少问题,如在思想政治素质、业务理论水平、工作能力等方面还不能完全适应新形势、新任务的要求,主要有以下几个方面一是理论学习不主动,自觉性不高。...

连力宁

领域:中国西藏

介绍:资料35页山顶山谷山顶山谷2、山谷风谷风山风影响与应用山谷和盆地常因夜间冷的山风吹向谷底,使谷底和盆地内形成逆温层,大气稳定,易造成大气污染。,,,,,

利来国际娱乐官方网站
eq0 | 2019-01-20 | 阅读(60) | 评论(919)
光电特征标识技术是一种新型利用光电特征对目标进行识别、定位的现代识别技术。【阅读全文】
,,,,,
cde | 2019-01-20 | 阅读(855) | 评论(755)
为什么木条、硫分别在空气里和氧气里燃烧的现象不同它说明了什么——氧气的含量越高,燃烧越剧烈。【阅读全文】
9mx | 2019-01-20 | 阅读(729) | 评论(731)
;鹰王胜出是需要经历 大智 大勇 大爱 ;从自我的重生,到鹰群的升级,再到族群的繁衍,鹰王重获的30年不只属于它自己。【阅读全文】
d9x | 2019-01-20 | 阅读(948) | 评论(360)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
md9 | 2019-01-20 | 阅读(11) | 评论(267)
②核心是可持续性消费。【阅读全文】
k0k | 2019-01-19 | 阅读(66) | 评论(211)
责编:汪梦唐、李萌【阅读全文】
xj8 | 2019-01-19 | 阅读(666) | 评论(310)
PAGE习题课——数列求和课后篇巩固探究A组1.已知数列{an}的前n项和为Sn,若an=1n(n+2),则                解析因为an=1n所以S5=a1+a2+a3+a4+a5=12答案D2.已知数列{an}的通项公式an=1n+n+1,若该数列的前k项之和等于9,则解析因为an=1n+n+1=n+1-n,所以其前n项和Sn=(2-1)+(3-2)+…+(n+1-n)答案A3.数列1,2,3,42716,…的前n项和为(  A.(n2+n-2)+(n+1)+1-3C.(n2-n+2)-(n+1)+31解析数列的前n项和为1++2++3++…+n+12×32n-1=(1+2+3+…+n)+12+34+98+…+1答案A4.已知{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则数列{cn}的前10项和为(  )解析由题意可得a1=1,设数列{an}的公比为q,数列{bn}的公差为d,则q+d=1,q2+2d∵q≠0,∴q=2,d=-1.∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n.设数列{cn}的前n项和为Sn,则S10=20+0+21-1+…+29-9=(20+21+…+29)-(1+2+…+9)=1-2101-2-答案A5.已知数列{an}满足a1=1,a2=2,an+2=1+解析由题意可得a3=a1+1,a5=a3+1=a1+2,所以奇数项组成以公差为1,首项为1的等差数列,共有9项,因此S奇=9(1+9)2=45.偶数项a4=2a2,a6=2a4=22a2,因此偶数项组成以2为首项,2为公比的等比数列,共有9项,所以S偶=2(1-29)1-2答案D6.已知数列{an}的通项公式an=2n-12n,则其前n项和为解析数列{an}的前n项和Sn=2×1-12+2×2-122+…+2n-12n=2(1答案n2+n+12n7.数列112+3,1解析∵an=1n∴Sn=11=1=1118答案118.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a解(1)设{an}的公差为d,则Sn=na1+n(由已知可得3解得a故{an}的通项公式为an=2-n.(2)由(1)知1a从而数列1a2nTn=1=n19.导学号04994055(2017·辽宁统考)已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{an}的通项公式;(2)设数列an2n-1的前n项和为Sn,求证:(1)解∵{an}为等差数列,∴a2=a1+d=a1+2,a4=a1+3d=a1+6.∵a1,a1+a2,2(a1+a4)成等比数列,∴(a1+a2)2=2a1(a1+a4即(2a1+2)2=2a1(2a解得a1=1,∴an=1+2×(n-1)=2n-1.(2)证明由(1),知an∴Sn=120+321Sn=121+322①-②,得Sn=1+21=1+2×1=1+2-1=3-4=3-2n∴Sn=6-2n∵n∈N*,2n+3∴Sn=6-2n+32B组1.已知数列{an}的通项公式an=(-1)n-1n2,则其前n项和为(  )                A.(-1)n-1n(n+1)(n+1解析依题意Sn=12-22+32-42+…+(-1)n-1n2.当n为偶数时,Sn=12-22+32-42+…-n2=(12-22)+(32-42)+…+[(n-1)2-n2]=-[1+2+3+4+…+(n-1)+n]=-n(当n为奇数时,Sn=12-22+32-42+…-(n-1)2+n2=Sn-1+n∴Sn=(-1)n-1n(n+1答案A2.已知数列{an}为12,13+23,14+24++1解析∵an=1+2+3+…∴bn=1anan∴Sn=41=41-答案A3.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )解析令bn=an+an+1+an+2,则b1=1+2+3=6,由题意知bn=6+2(n-1)=2【阅读全文】
hsp | 2019-01-19 | 阅读(779) | 评论(854)
用户服务条款尊敬的用户:您好!欢迎光临文档投稿赚钱网站。【阅读全文】
,,,,,
zqx | 2019-01-19 | 阅读(532) | 评论(368)
两年三万元,少儿编程到底学些啥钱报记者调查杭城少儿编程培训热:你的孩子9岁才来学,已经晚了几乎所有培训机构都会提到对孩子升学有帮助,但事实真的如此吗?孩子们在体验编程课。【阅读全文】
uvx | 2019-01-18 | 阅读(519) | 评论(848)
他记述人物很有特点,善于撷取一、二个或几个印象鲜明的生活片断来刻画人物。【阅读全文】
soq | 2019-01-18 | 阅读(378) | 评论(345)
到魏晋时,有“谕尚书镇牛淆,中秋夕与左右微服泛江”的记载。【阅读全文】
i8s | 2019-01-18 | 阅读(848) | 评论(74)
体现共同富裕原则,广泛吸收社会资金,缓解就业压力,增加积累和税收。【阅读全文】
sy8 | 2019-01-18 | 阅读(619) | 评论(717)
2018年12月1日-12月31日新订购诚信通的用户(以下简称“用户”)用户在活动时间内新办理诚信通,即可获得询价单订阅免费试用12个月+报价宝10条免费报价的权益(1688大企业采购报价资格)。【阅读全文】
ijb | 2019-01-17 | 阅读(366) | 评论(471)
称秤chēnɡchènɡ称秤称秤chēnɡchènɡ象xiànɡxiànɡ像别人送给曹操一头大()。【阅读全文】
zl7 | 2019-01-17 | 阅读(710) | 评论(855)
因此必须发出呼吁,制止象牙的非法贩卖,以拯救这一濒危动物。【阅读全文】
共5页

友情链接,当前时间:2019-01-20

利来国际娱乐官方 利来国际娱乐平台 利来娱乐网址 利来娱乐在线平台 利来国际最老牌
利来电游 利来国际旗舰厅app w66利来guoji 利来国际w66网页版 利来国际w66手机版
利来娱乐国际 利来,利来娱乐 利来国际官方网站 w66.con 利来天用户
利来娱乐备用 利来国际w66.com 利来国际网址 国际利来旗舰厅 利来国际最老牌
新源县| 平潭县| 蓬溪县| 屏东市| 辽阳县| 漯河市| 清远市| 贵德县| 孟连| 惠来县| 永城市| 太谷县| 务川| 吉木萨尔县| 安阳市| 二连浩特市| 甘孜| 丽江市| 卓尼县| 伊宁县| 周口市| 贡山| 柳河县| 阳原县| 稻城县| 克东县| 奉化市| 江陵县| 连平县| 和平县| 饶平县| 东城区| 平山县| 时尚| 蓬安县| 房产| 湖北省| 乌鲁木齐县| 雷山县| 商南县| 乌拉特中旗| http://m.40929049.cn http://m.51968207.cn http://m.79780244.cn http://m.17952120.cn http://m.08488124.cn http://m.36921786.cn